
Deep Embedding Learning with Discriminative Sampling Policy

Yueqi Duan1,2,3, Lei Chen1,2,3,4, Jiwen Lu1,2,3,∗, Jie Zhou1,2,3

1Department of Automation, Tsinghua University, China
2State Key Lab of Intelligent Technologies and Systems, China

3Beijing National Research Center for Information Science and Technology, China
4School of Electrical and Information Engineering, Tianjin University, China

duanyq14@mails.tsinghua.edu.cn; chen lei@tju.edu.cn; lujiwen@tsinghua.edu.cn;

jzhou@tsinghua.edu.cn

Abstract

Deep embedding learning aims to learn a distance metric

for effective similarity measurement, which has achieved

promising performance in various tasks. As the vast major-

ity of training samples produce gradients with magnitudes

close to zero, hard example mining is usually employed

to improve the effectiveness and efficiency of the training

procedure. However, most existing sampling methods are

designed by hand, which ignores the dependence between

examples and suffer from exhaustive searching. In this

paper, we propose a deep embedding with discrimina-

tive sampling policy (DE-DSP) learning framework by

simultaneously training two models: a deep sampler

network that learns effective sampling strategies, and a

feature embedding that maps samples to the feature space.

Rather than exhaustively calculating the hardness of all

the examples for mining through forward-propagation, the

deep sampler network exploits the strong prior of relations

among samples to learn discriminative sampling policy in

a more efficient manner. Experimental results demonstrate

faster convergence and stronger discriminative power

of our DE-DSP framework under different embedding

objectives.

1. Introduction

Embedding learning for effective distance metric es-

timation has aroused much attention over the past few

decades [5, 10, 36, 16]. With the recent success of deep

learning [18, 23, 12, 15], deep embedding learning methods

present strong discriminative power in various tasks due to

the high nonlinearity, such as visual search [31, 30, 35], bio-

metric verification [3, 25, 1] and zero-shot learning [2, 41].

The basic goal of deep embedding learning is to minimize
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intra-class variations and maximize inter-class distances,

where numbers of objectives have been presented in the lit-

erature [3, 25, 33, 4, 29, 31, 30, 22, 35], including the most

commonly-used contrastive loss [3] and triplet loss [25].

While the sample sizes are usually quadratic or cubic in

deep embedding learning, the meaningful hard examples

only account for the tiny minority. Training with numer-

ous easy examples may suffer from inefficiency and poor

performance as they contribute little to the training pro-

cess by producing gradients with magnitudes close to ze-

ro [29, 14]. To this end, several hard example mining ap-

proaches have been proposed for effective sample selec-

tion [25, 42, 38, 11, 40, 39]. Recent studies have shown

that sampling plays an equal or even more crucial role than

the objective function in deep embedding learning [38].

An ideal sampling strategy should be targeted and adap-

tive. On one hand, the selected samples should target at

the requirements of the current state of embedding. On

the other hand, the sampling strategy should be adaptive-

ly updated during the training process of deep embedding

learning. Unfortunately, it is not easy to achieve the goals

for most existing sampling methods designed by hand as a

huge number of candidates are required to perform forward-

propagation and exhaustive search (to be targeted) at ev-

ery step (to be adaptive) of deep embedding learning. To

avoid the infeasible computation, most exsiting sampling

strategies employ an online method by selecting effective

examples within a small mini-batch as a suboptimal solu-

tion [25, 38]. However, limited sampling space may lead to

slow convergence and poor local optima.

In this paper, we consider that exhaustive search is far

from required for sampling. For example, our humans only

need a few attempts to acquire that there are large inter-class

distances between two specific classes with 100 samples in

each class, which are not probably able to construct hard

triplets. However, exhaustive search suffers from 1,980,000

(200× 99× 100) hardness calculations. It should be noted
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Figure 1. An overview of the proposed DE-DSP framework with the widely-used triplet embedding for an easy illustration. In the figure,

DSN is the deep sampling network, and M represents the feature embedding. Deep models in solid lines indicate fixed parameters, and

the ones in dashed lines are fine-tuned. We first select a mini-batch of samples with high posibilities through the deep sampling network,

where the size of the mini-batch is better selected as an integral divisor of the embedding batchsize. Then, we receive the scores of the

samples from the feature embedding through forward-propagation, which are utilized to fine-tune the deep sampler network. We iteratively

perform Step 1 and Step 2 until having generated enough triplets for the whole batch. Lastly, we train the feature embedding with the batch

of training samples.

that each hardness calculation requires to perform forward-

propagation through the deep embedding network, which

is usually very deep to achieve strong discriminative pow-

er. The main reason is that our humans have the ability

to capture the relations among candidates, while searching

based methods process each candidate independently. To

this end, we propose a deep embedding with discrimina-

tive sampling policy (DE-DSP) learning framework, where

we design a deep sampler network (DSN) to learn effective

sampling strategies rather than exhaustive search. With the

learned sampling policy, we obtain the possibility for each

candidate sample of being selected, and the deep embed-

ding provides the scores for the selected samples to opti-

mize the sampling policy. Figure 1 shows an overview of

the proposed DE-DSP. We observe that the number of hard-

ness calculation is equal to the batchsize, which is indepen-

dent to the candidate size and much less than exhaustive

search. Compared with the existing hand-crafted sampling

methods, there are two key advantages of DE-DSP:

1) To our best knowledge, it is the first attempt to learn a

deep neural network for discriminative sampling pol-

icy. Compared with existing searching based meth-

ods which are especially designed for a few losses by

hand (usually contrastive and triplet losses), DE-DSP

is more general to various embedding structures and

does not require strong prior sampling knowledge of

human by directly consuming the embedding objec-

tive as the reward function. Moreover, DSN provides

the possibilities of candidates of being chosen rather

than a straightforward decision. As only choosing hard

samples may be sub-optimal [38], easy samples will

still have chances to be selected by DSN.

2) Existing methods assume that the hardness of each

candidate is independent and have to perform forward-

propagation on all (or a subset of) the examples

through a very deep embedding network. Instead, D-

SN learns an effective policy with only a few score

tests, which can be generalized to those untested sam-

ples. We consider that DSN possesses such general-

ization ability as it exploits the relation of distribution

consistency between the tested and untested samples

as strong prior, so that the untested samples obtain rea-

sonable score estimations through the policy learned

from the tested ones. For example, an untested sample

will obtain a close score estimation to a similar tested

sample. Also, while most existing sampling method-

s are independent at varying training steps and have

to re-compute all the distances at each step, DSN has

stronger adaptability as we can simply update the pa-

rameters based on the last step.

Due to the advantages above, DE-DSP is able to s-

elect more effective training samples from larger candi-

date size. Moreover, at the end of the training process

where most samples are invalid for embedding learning,

DE-DSP is more likely to capture the remaining effective

samples with the discriminative sampling policy. As a gen-

eral framework, we develop the widely-used triplet loss [25]

and the state-of-the-art N-pair loss [29] to demonstrate the

effectiveness of the proposed DE-DSP. Experimental re-

sults show that DE-DSP successfully boosts the perfor-

mance of the original objectives and outperforms existing

hand-crafted sampling methods on the CUB-200-2011 [34],

Cars196 [17], Stanford Online Products [31] and In-Shop

Clothes Retrieval [21] datasets.

2. Related Work

Metric Learning: Metric learning aims to obtain effec-

tive similarity measurements between input samples, where
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great progress has been made over the past few decades.

Conventional methods learn a linear Mahalanobis distance

to replace the simple Euclidean distance [26, 27, 9, 5, 10,

36, 19, 16]. For example, Weinberger et al. [36] separat-

ed samples from different classes by a large margin for k-

nearest neighbor classification. Jain et al. [16] studied low-

dimensional metrics as a regularization including low-rank

and sparse metrics. While kernel tricks are employed to ad-

dress the nonlinear correlations of samples [37, 7], recent

deep metric learning methods present stronger discrimina-

tive power with the development of deep learning [3, 25].

Contrastive loss [3] focused on the absolute distances with-

in a margin for the pairwise input samples. Triplet loss [25]

constructed triplet input samples to ensure the relative dis-

tance ordering between positives and negatives. In recent

years, several effective objectives have been proposed by

constraining on more samples [33, 14, 31, 29, 8]. Repre-

sentative methods include histogram loss [33] and position-

dependent deep metric (PDDM) [14] for quadruplets, and

lifted structure [31] and N-pair loss [29] for the whole

batches. However, most training examples contribute lit-

tle for deep metric learning and data sampling is required to

enhance the effectiveness and efficiency.

Hard Example Mining: Hard example mining is wide-

ly applied to many tasks for effective model training [28, 42,

38, 6, 20]. In deep embedding learning, hard example min-

ing acts as bootstrapping by gradually selecting hard sam-

ples in the embedding space [28, 11]. For example, Schrof-

f et al. [25] trained FaceNet with “semi-hard” triplets, where

negative-anchor pairs had small distances but still farther

than positive-anchor pairs. Harwood et al. [11] presented a

smart mining strategy to improve the efficiency of data sam-

pling. Yuan et al. [40] adaptively trained the feature embed-

ding at multiple hard levels in a hard-aware deeply casaded

(HDC) manner. Wu et al. [38] proposed a margin based loss

for distance weighted sampling and demonstrated the sig-

nificant importance of sampling in deep embedding learn-

ing. However, these methods are hand-crafted and suffer

from limited searching space. Rather than searching for ef-

fective training examples at every training step, we focus on

adaptively learning discriminative sampling policies.

3. Proposed Approach

Let X = {x1, x2, · · · , xn} be the input data and yi ∈
{1, 2, · · · , C} be the label of xi. Deep embedding learning

aims to train a deep forward network f(·; θ) : X → R
d,

where x is the input and θ is the learnable parameters. For

simplicity, we omit x and θ from f(x; θ) with superscripts

and subscripts inherited. We define the distance between a

pair of embedded features as Dij = ||fi−fj ||2, where ||·||2
represents the Euclidean norm. In general, the goal of deep

embedding learning is to minimize the distances between

positive pairs and maximize the distances between negative

pairs. To achieve this, most deep embedding approaches

train the network with a well-designed objective Lemb(·; θ),
where representative objectives include contrastive loss and

triplet loss.

Contrastive loss focuses on absolute distances by taking

pairwise samples {xi, xj} as inputs. The objective function

of contrastive loss is shown as follows:

Lcont = 1{yi = yj}D
2
ij + 1{yi 6= yj}[α−Dij ]

2
+, (1)

where α is the margin and the operation of [·] represents the

hinge function max (0, ·).
Triplet loss constructs triplet samples {xa, xp, xn} for

training, which represent anchor, positive and negative sam-

ples, respectively. Compared with contrastive loss, triplet

loss only requires the relative ordering of distances:

Ltri = [D2
ap −D2

an + α]+. (2)

Optimizing with all training pairs or triplets suffer from

infeasible computation as the sizes of samples are quadratic

or cubic. Hence, hard example mining methods are em-

ployed to select meaningful samples within a batch. Simple

hard negative mining is able to accelerate the convergence

of contrastive loss, while semi-hard criterion is presented

by FaceNet [25] for triplet loss:

x∗
n = argmin

xn:Dap<Dan

Dan, (3)

where x∗
n represents the selected semi-hard negative sample

given anchor and positive samples.

3.1. Deep Sampler Network

In this paper, instead of computing the costly argmin
and argmax functions, we train a deep sampler network to

select effective training samples with a softmax policy. The

probability of choosing one sample is given by:

p(xs|X; η) =
exp (H(xs; η))

∑

x∈{xs}
exp (H(x; η))

, (4)

where xs = {x(1), x(2), · · · , x(L)} represents a selected

sample, e.g. {xi, xj} for pairwise inputs and {xa, xp, xn}
for triplet inputs, and {xs} is the set of candidate train-

ing samples. H(xs; η) is defined as the instructiveness of

the selected training sample xs, which measures how ef-

fective it is to train the embedding. Previous studies show

that H(xs; η) should be highly related to the hardness of

the selected sample [25, 38], and the deep sampler network

g(·; η) predicts H(xs; η) for each candidate sample with the

parameters η.

While the learned sampling policy is able to predict the

instructiveness of the candidate samples without exhaustive

search, the number of candidate training samples xs is still
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(a) Sampler for Triplet Embedding (b) Sampler for N-pair Embedding

Figure 2. The architectures of deep sampler network for (a) triplet embedding, and (b) N-pair embedding. For triplet embedding, the first

sampler selects the positive example and the negative class, and the second sampler chooses the negative example. For N-pair embedding,

the sampler independently selects N probe samples to construct N pairs with the gallery samples. (Best viewed in color.)

exponential. To address this, we employ L networks to se-

quentially select x(l) for the sample xs with the conditional

probability formula:

p(xs|X; η) = p(x(1), x(2), · · · , x(L)|X; η)

=
L
∏

l=1

p(x(l)|x(1), · · · , x(l−1),X; η), (5)

where η = {η1, · · · , ηL} is the parameters of the networks.

In order to train the deep sampler network, the feature

embedding should judge the quality of each selected sam-

ple xs with a score function S(xs; θ), where more instruc-

tive samples gain higher scores. The goal of the deep sam-

pler network is to maximize the expected scores with the

sampling policy:

Ls(X; g, f) = −Exs∼p(xs|X;η)[S(xs; θ)], (6)

and we omit the subscripts of Exs∼p(xs|X;η) for short.

When f is fixed, (6) has a global optima of

p(xs|X; η) =

{

1 if xs = argmax
x

S(x; θ),

0 else.
(7)

The global optima of (6) is equal to the result of ex-

haustive search in hand-crafted methods under a prop-

er definition of S, such as a score of hardness or semi-

hardness. However, the proposed deep sampler network re-

quires much less hardness tests and allows larger sampling

space. In this paper, we set S(xs; θ) = Lemb(xs; θ) for sim-

plicity, where Lemb is the loss function employed for deep

embedding learning.1 Moreover, it is necessary to avoid

1In the experiments, we minus the average score of the mini-batch for

each S(xs; θ) to provide both positive and negative scores.

repetitively selecting the same sample with a high score in

a mini-batch. A simple yet effective solution is to uniform-

ly specify x(1) (e.g. anchors in the triplet embedding) from

all the classes by hand, and select the others to construct

training examples with the learned sampling policy.

While it is usually hard to score each x(l) in the training

sample, we train all the L networks with the holistic score

S(xs; θ) considering L is relatively small. With the equali-

ty ∂
∂η

p(xs|X; η) = p(xs|X; η) ∂
∂η

ln p(xs|X; η), we obtain

the derivative of the expected reward as follows:

∂

∂η
E[S(xs; θ)] = E[S(xs; θ)

∂

∂η
p(xs|X; η)]. (8)

We first sample xs according to the current policy, and

compute its score S(xs; θ) through embedding. In this way,

we obtain a mini-batch of xs with scores. Then, we rewrite

p(xs|X; η) with (5) as the product of the outputs of L net-

works. With each selected xs, ηl only affects the output of

the l-th network, and we can compute the derivative of each

network respectively.

3.2. Joint Deep Sampler and Embedding Learning

In DE-DSP, we jointly train the deep sampler network

and the feature embedding in an iterative manner, which

is a general framework and a wide range of existing su-

pervised embedding losses Lemb(·; θ) are applicable. The

deep sampler network learns discriminative sampling poli-

cy to generate targeted examples for the feature embedding,

and the parameters of embedding are optimized with the ef-

fective training examples. Algorithm 1 details the training

procedure of DE-DSP. In the following, we discuss the pro-

posed DE-DSP framework with two different losses: triplet

embedding and N-pair embedding.
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DE-DSP for Triplet Embedding: Triplet loss [25] is

widely-used in feature embedding, which is formulated as

(2). In order to avoid repetitive sampling within a mini-

batch, we randomly select the anchors from varying classes

at each time, and learn the sampling policies of positive and

negative examples given the anchor with L = 2. Figure 2

(a) shows the network architecture of the sampler for triplet

embedding, where the two networks share the parameters

of the convolutional and fully connected layers. For the first

network, we pile all the anchors (with the current anchor for

constructing the triplet as the first) and candidate positives

up as the input, simultaneously employing two softmax lay-

ers for positive example and negative class selections. The

reason for negative class determination is to reduce the di-

mension of the softmax layer for the second network. The

second network takes the current anchor, the selected posi-

tive example and the candidate negative examples from the

choosing class as the input, and obtains the selected nega-

tive example through softmax.

DE-DSP for N-pair Embedding: N-pair loss [29] is a

recent embedding learning structure, where each batch con-

tains N pairs of probe and gallery samples. Each probe

sample together with all the gallery samples would con-

struct an (N +1)-tuplet, which includes a positive example

and N negative examples. The objective function of N-pair

loss is written as follows:

Lnpair =
1

N

N
∑

i=1

log (1 +
∑

j 6=i

exp (fT
i f+

j − fT
i f+

i )), (9)

where xi and x+
i are probe and gallery samples. We suggest

the readers referring to [29] for complete details.

While the N-pair loss achieves the state-of-the-art perfor-

mance, very few works research on mining more effective

batches. In DE-DSP, we aim to learn the policy of selecting

N probe samples with the pre-set gallery samples. Given

N gallery samplers, the selection of each probe sample is

independent due to the decomposability of (9). Therefore,

we employ the same deep sampler network to select each

probe sample separately. Figure 2 (b) shows the structure

of deep sampler network for N-pair embedding.

4. Experiments

We conducted experiments on the widely-used CUB-

200-2011 [34], Cars196 [17], Stanford Online Products [31]

and In-Shop Clothes Retrieval [21] datasets following the

standard evaluation protocols. The CUB-200-2011 dataset

contains 200 bird species with 11,788 images. We applied

the first 100 species with 5,864 images for training, and the

rest 100 species with 5,924 images for testing. The Cars196

dataset includes 196 car models with 16,185 images. We

applied the first 98 models with 8,054 images for training,

and the remaining 98 models with 8,131 images for testing.

Algorithm 1: DE-DSP

Input: Training set, number of mini-batches in each batch

K, and iteration number T .

Output: Parameters of the deep sampler network η, and

parameters of the feature embedding θ.

1: Initialize the parameters of feature embedding θ.

2: Pre-train the parameters of deep sampler network η.

3: for iter = 1, 2, · · · , T do

4: for k = 1, 2, · · · ,K do

5: Sample mini-batch of m training examples with

the sampling policy p(xs|X; η).
6: Set the mini-batch in the batch.

7: Compute the scores S(xs; θ) through forward-

propagation of the feature embedding.

8: Update the parameters of deep sampler network

η with the mini-batch using (8).

9: end for

10: Update the parameters of feature embedding θ with

the batch using Lemb.

11: end for

12: return η and θ.

The Stanford Online Products dataset has 22,634 products

from eBay.com with 120,053 images. We applied the first

11,318 products with 59,551 images for training, and the

rest 11,316 products with 60,502 images for testing. The

In-Shop Clothes Retrieval dataset consists of 11,735 class-

es of clothes with 54,642 images. We applied the first 3,997

classes with 25,882 images for training, 3,985 classes with

14,218 images for query, and the rest 3,985 classes with

12,612 images for gallery.

In the training procedure, We first normalized each im-

age to 256 × 256 and then performed standard data aug-

mentation by random crop and horizontal mirroring. We

initialized all the embedding networks for baseline and pro-

posed methods with GoogLeNet [32] pretrained on the Ima-

geNet ILSVRC dataset [24], adding a fully connected layer

with random initialization. We trained the additional fully

connected layer with 10 times learning rate compared with

other layers. As the performance is not largely affected by

embedding sizes [31], we fixed the embedding length as 512

throughout the experiments. The batchsizes are 120 for both

triplet embedding and N-pair embedding, and the size of a

mini-batch for triplet loss is 30.

In the experiments, we employed both retrieval and clus-

tering tasks for effectiveness demonstration. For the clus-

tering task, we computed the normalized mutual informa-

tion (NMI) and F1 metrics on the test set with the K-

means algorithm. NMI employs the ground truth classes

C = {c1, · · · , cK} and a set of clusters Ω = {ω1, · · · , ωK}
as the input, where ci represents the samples with the label

i, and ωj is the samples belonging to the jth cluster. NMI is
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Table 1. Experimental results (%) on the CUB-200-2011 and Cars196 datasets compared with the widely-used baseline methods.

Method
CUB-200-2011 Cars196

NMI F1 R@1 R@2 R@4 NMI F1 R@1 R@2 R@4

DDML 47.3 13.1 31.2 41.6 54.7 41.7 10.9 32.7 43.9 56.5

Lifted 56.4 22.6 46.9 59.8 71.2 57.8 25.1 59.9 70.4 79.6

Clustering 59.2 - 48.2 61.4 71.8 59.0 - 58.1 70.6 80.3

Angular 61.0 30.2 53.6 65.0 75.3 62.4 31.8 71.3 80.7 87.0

DAML 61.3 29.5 52.7 65.4 75.5 66.0 36.4 75.1 83.8 89.7

Triplet 49.8 15.0 35.9 47.7 59.1 52.9 17.9 45.1 57.4 69.7

Semi-hard (Triplet) 50.3 16.4 37.9 50.4 63.0 53.3 18.5 52.4 65.2 75.1

DE-DSP (Triplet) 53.7 19.8 41.0 53.2 64.8 55.0 22.3 59.3 71.3 81.3

N-pair 60.2 28.2 51.9 64.3 74.9 62.7 31.8 68.9 78.9 85.8

DE-DSP (N-pair) 61.7 30.5 53.6 65.5 76.9 64.4 33.3 72.9 81.6 88.8

Table 2. Experimental results (%) on the Stanford Online Products and In-Shop Clothes Retrieval datasets compared with the widely-used

baseline methods.

Method
Stanford Online Products In-Shop Clothes Retrieval

NMI F1 R@1 R@10 R@100 R@1 R@10 R@20 R@30 R@40

DDML 83.4 10.7 42.1 57.8 73.7 24.4 47.8 55.6 60.4 64.2

Lifted 87.2 25.3 62.6 80.9 91.2 75.3 93.1 95.5 96.4 97.0

Clustering 89.5 - 67.0 83.7 93.2 - - - - -

Angular 87.8 26.5 67.9 83.2 92.2 80.4 93.9 95.7 96.5 97.1

DAML 89.4 32.4 68.4 83.5 92.3 78.9 93.8 95.7 96.6 97.1

Triplet 86.3 20.2 53.9 72.1 85.7 56.1 82.0 86.8 89.2 90.6

Semi-hard (Triplet) 86.9 21.7 55.9 73.5 86.7 57.0 82.8 87.2 90.1 91.6

DE-DSP (Triplet) 87.4 22.7 58.2 75.8 88.4 58.7 84.4 89.3 91.5 92.8

N-pair 87.9 27.1 66.4 82.9 92.1 76.4 93.6 94.7 95.6 96.2

DE-DSP (N-pair) 89.2 30.6 68.9 84.0 92.6 78.6 93.8 95.5 96.2 96.7

the ratio of mutual information and the mean entropy of the

ground truth and clusters NMI(Ω,C) = 2I(Ω;C)
H(Ω)+H(C) , and

F1 metric is defined as the harmonic mean of precision and

recall F1 = 2PR
P+R

. For the retrieval task, we calculated the

percentage of test samples that had at least one sample from

the same class in R nearest neighbors.

4.1. Quantitative Results

We applied the DE-DSP framework on triplet loss [25]

and N-pair loss [29] for direct comparisons, and also com-

pared with widely-used baseline methods including D-

DML [13], lifted structure [31], clustering [30], angular

loss [35] and DAML [6]. In the experiments, we also tested

the performance of triplet loss with semi-hard negative min-

ing strategy for reference. Among the listed methods, con-

trastive loss and DDML are weakly supervised as they only

require pairwise inputs, while other methods are strongly

supervised with full annotations of identities.

Tables 1 and 2 show the experimental results on the

CUB-200-2011, Cars196, Stanford Online Products and In-

Shop Clothes Retrieval datasets respectively, where bold

numbers show the results which are improved with the

learned sampling policy compared with random/semi-hard

strategies. We observe that the proposed DE-DSP frame-

work successfully boosts the performance of existing triplet

embedding and N-pair embedding due to the selection of

effective training examples. In general, the improvement

in Cars196 is larger than CUB-200-2011, where a possible

reason is that the images in Cars196 have smaller variations

and require more carefully sampling. For triplet embed-

ding, it is crucial to select effective training examples, and

the proposed DE-DSP leads to relatively large improvemen-

t. Semi-hard sampling strategy is also tested for training da-

ta mining. However, as a hand-crafted method, semi-hard

negative mining suffer from exhaustive search and limited

searching space. Instead, the proposed DE-DSP exploit-

s the relationships between samples to learn an effective

sampling policy without additional prior sampling knowl-

edge of human. For N-pair embedding, while most existing

sampling strategies are not applicable as they are especially

designed for contrastive loss and triplet loss, DE-DSP is a

general framework which can be employed to varying em-
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(a) Recall Scores (b) Loss Plots

Figure 3. Recall scores and loss plots on the CUB-200-2011 and Cars196 datasets. (a) Left: CUB-200-2011. Right: Cars196. Solid lines

represent the proposed DE-DSP based method and dash lines represent triplet loss. Lines in the same color share the same value of R. (b)

Top: CUB-200-2011. Bottom: Cars196. (Best viewed in color.)

bedding losses. N-pair embedding extends the triplet loss

to an (N +1)-tuplet loss allowing more comparisons within

a batch, which partly addresses the problem of meaningful

training sample selection. Therefore, the improvement is

relatively small for the proposed DE-DSP compared with

the triplet embedding, yet it still improves the results and

achieves the state-of-the-art performance on both datasets.

Figure 3 shows the validation recall scores under differ-

ent R and loss plots of triplet and DE-DSP (triplet) embed-

dings on the CUB-200-2011 and Cars196 datasets. The loss

plots iterate over one batch and we drew each point training

the deep embedding with a batch. We observe that the DE-

DSP based method selects highly effective training sam-

ples, so that the recall scores increase rapidly and contin-

uously outperform triplet loss with random sampling. The

loss plots present significant differences between triplet em-

bedding and DE-DSP (triplet) methods, which suffer from

severe vibration for the triplet embedding and descend s-

moothly for the proposed DE-DSP method. While there

are fluctuations in training losses for random sampling as

it is not guaranteed to select meaningful training examples

at each step, DSN has learned the effective sampling policy

for the current embedding to ensure the decrease of train-

ing losses at each iteration. The smoothness of loss plots

demonstrate the discriminativeness of the sampling policy.

We also compared our DE-DSP with recent sampling

methods on the Cars196 dataset with the widely-used triplet

loss, which included semi-hard sampling, N-pair sampling,

and fast approximate nearest neighbour graph (FANNG) as

shown in Table 3. Semi-hard sampling is an easy but effec-

tive approach by selecting hard negatives which are farther

from the anchor than positives. N-pair sampling aims to s-

elect triplets using the structure of N-pair data. FANNG is

a recent smart mining method with low computational cost-

Table 3. Experimental results (%) on the Cars196 dataset com-

pared with varying sampling strategies.

Method R@1 R@2 R@4 R@8

Triplet 45.1 57.4 69.7 79.2

N-pair sampling 46.3 59.9 71.4 81.3

Semi-hard sampling 52.4 65.2 75.1 84.3

FANNG sampling 58.2 70.6 78.9 86.7

DE-DSP (Triplet) 59.3 71.3 81.3 88.6

s. For fair comparisons, we fixed the network architecture

as GoogLeNet and guaranteed the only difference as the

training data. We observe that DE-DSP achieves better re-

sults than the recent sampling methods, which demonstrates

the effectiveness of the learned sampling policy. Moreover,

DE-DSP can be generally applied to various training losses

compared with loss-specific methods.

4.2. Comparison in Sampling Time

We tested the computational time to select one negative

sample from 100 classes where each contained 100 images,

given an anchor and a positive sample. For the searching

method, we needed to obtain 10,000 GoogLeNet features

for all the candidates and computed 20,000 Euclidean dis-

tances, which took around 4.3s. For DE-DSP, we only per-

formed 102 forward passes of DSN (much shallower than

GoogLeNet) to determine the class, and another 102 for-

ward passes to choose the sample. The time was 0.016s,

where we bypassed exhaustive GoogLeNet feature extrac-

tion and distance computation due to the exploitation of re-

lationships among samples. As the training process of D-

SN might be costly, we fine-tuned its parameters based on

the last step for quick convergence. The average time of
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(a) CUB-200-2011 (b) Cars196

Figure 4. Selected triplet samples with the learned sampling policy on (a) CUB-200-2011, and (b) Cars196. In the figure, A is the anchor

sample, P represents the candidate positive samples, and N represents the candidate negative samples. Through the learned sampling

policy, we obtain the possibility for each sample of being selected, where the images on the left are with high possibilities and right with

low possibilities. The deep sampler network selects the samples according to the possibilities for effective embedding learning.

fine-tuning DSN was 5.6s per batch, and the total average

processing time for a batch (both sampling and embedding

learning) was 20.6s. In general, we train a lightweight DSN

model to exploit the relations among training samples, so

that it would not be required to perform exhaustive forward

passes through the heavyweight GoogLeNet model.

4.3. Qualitative Results

While the proposed DE-DSP successfully boosts the per-

formance and smooths the loss plots on the two datasets, it

is still required to visualize the selected samples for demon-

strating the effectiveness of the learned sampling policy. In

this subsection, we visualize the sampling results of the final

deep sampler network for an intuitive observation. Figure 4

shows the sampling examples of triplet embedding on both

CUB-200-2011 and Cars196. In the figure, the first row is

the selected anchor sample. The second and third rows are

candidate positive and negative samples, respectively. Ac-

cording to the sampler for triplet embedding shown in Fig-

ure 2 (a), the candidate negative samples are from the same

selected class for each anchor sample. As the learned poli-

cy is able to obtain the possibility of each sample, we show

the first two positive/negative samples with highest/lowest

possibilities given the anchor sample. We observe that hard

samples, i.e. dissimilar positive samples and similar neg-

ative samples, have larger chances of being selected while

easy samples are with low possibilities. The visualization

results of sample selection demonstrate the discriminative-

ness of the learned sampling policy, which is able to mine

more meaningful training examples for effective embedding

learning. It should also be noticed that although hard sam-

ples have higher possibilities of being selected as shown in

Figure 4, easy samples still have chances to be chosen with

less opportunities. As pointed out in [38], training the deep

embedding network with only hard examples may lead to

sub-optima, and the proposed DE-DSP shares the similar

thoughts by selecting samples according to the possibilities.

5. Conclusion

In this paper, we have proposed a deep embedding with

discriminative sampling policy (DE-DSP) learning frame-

work, which can be generally applied to varying embed-

ding losses. Through joint learning of sampling policy and

feature embedding, DSN gradually selects targeted training

examples for effective training at each step. Compared with

the existing sampling strategies, DSN exploits the relations

among candidate samples to learn discriminative sampling

policy rather than exhaustive search, which does not require

strong prior sampling knowledge of human by simply set-

ting the embedding objective as the reward of DSN. More-

over, it is more adaptive to different training steps through

fine-tuning the parameters based on last step, which avoids

repetitive computation at each step. Experimental result-

s show that the proposed deep sampler network is able to

learn discriminative sampling policy, and DE-DSP success-

fully boosts the performance of the widely-used triplet em-

bedding and N-pair embedding on the benchmark datasets.

Acknowledgement

This work was supported in part by the National Natural

Science Foundation of China under Grant 61672306, Grant

U1813218, Grant 61822603, Grant U1713214, and Grant

61572271. The authors would like to thank Mr. Qiyuan

Dong for valuable discussions.

4971



References

[1] Slawomir Bak and Peter Carr. One-shot metric learning for

person re-identification. In CVPR, pages 1571–1580, 2017.

1
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